Quadrilaterals: polygon having 4 sides.

no | sides | pair of | 2 pairs of | sides |

| sides | haides | parallelograms |

| isosceles | hombus rectangle |
|- the non-|| sides are | sides |
|- sides are | sides |
|- sides are | sides |
|- sides | sides |
|- si

## Definition to Know:

• A parallelogram is a quadrilateral in which two pairs of opposite sides are parallel.



## Theorems to Know:

- Opposite sides of a parallelogram are congruent.
- Opposite angles of a parallelogram are congruent.
- . Two consecutive angles of a parallelogram are supplementary.
- . If a parallelogram has one right angle, then it has four right angles.



. The diagonals of a parallelogram bisect each other.

Diagonals: segments that connect opposite Ls.



Ac and BD are the diagonals.

If ABCD is a parallelogram, then each of the following statements <u>are TRUE:</u> M is the midpoint of AC and BD

 $\frac{\overline{\mathsf{AM}}}{\mathsf{BM}} \cong \frac{\overline{\mathsf{CM}}}{\mathsf{DM}}$ 

• Each diagonal separates the parallelogram into two congruent triangles.



AD ~ BC & opposite sides of AB ~ DC & a parallelogram are

BD 
BD by Reflexive Property.

If ABCD is a parallelogram, then  $\triangle ABD \cong \triangle CDB$ . diagonal  $\overline{BD}$  is drawn. by SSS.

## **Example Problems:**



mLD

In parallelogram ABCD, m∠ABC = 3x - 12 and m∠CDA = x + 40. Find



2. In parallelogram ABCD, BC = 9y + 10, AD = 6y + 40, and AB = 
$$\frac{1}{2}$$
y + 50. Find BC, AD, AB, and DC.



AD=6(10)+40 = 100  
BC=9(10)+10=100  
AB=
$$\frac{1}{2}$$
(10)+50 = 55



Problems 3 and 4 refer to the diagram below.

3. If m∠DCB = a + 12 and m∠CDA = 4a + 18, find the degree measures of the angles of the parallelogram.

$$\frac{50 + 30 = 180}{-30 - 30}$$

$$\frac{50}{5} = 150$$

4. If AE = 5x - 3 and EC = 15 - x find AC.

Diagonals bisect

each other.



E is the midpoint of AC. → AE ≃ EC

AE=EC  

$$5x-3=15-x$$
  
 $+1x+1+x$   
 $6x-3=15$   
 $4+3+3$   
 $6x=18$ 

5. Determine the coordinates of the intersection of the diagonals of Parallelogram ABCD with vertices A(-2, 4), B(3, 5), C(2, -3), and D(-3, -4).



midpoint = 
$$\left(\frac{X_1 + X_2}{2}, \frac{Y_1 + Y_2}{2}\right)$$
  
mp. of  $AC = \left(\frac{2+2}{2}, \frac{4-3}{2}\right) = \left(\frac{0}{2}, \frac{1}{2}\right)$   
=  $(0, 0.5)$ 

mp of BD = 
$$\left(\frac{3-3}{2}, \frac{5-4}{2}\right) = \left(\frac{0}{2}, \frac{1}{2}\right)$$

The point of intersection, E, is (0,0.5) = (0,0.5)